Generalized Disjunctive Programming: A Framework for Formulation and Alternative Algorithms for MINLP Optimization

نویسندگان

  • Ignacio E. Grossmann
  • Juan P. Ruiz
  • IGNACIO E. GROSSMANN
  • JUAN P. RUIZ
چکیده

Abstract. Generalized disjunctive programming (GDP) is an extension of the disjunctive programming paradigm developed by Balas. The GDP formulation involves Boolean and continuous variables that are specified in algebraic constraints, disjunctions and logic propositions, which is an alternative representation to the traditional algebraic mixedinteger programming formulation. After providing a brief review of MINLP optimization, we present an overview of GDP for the case of convex functions emphasizing the quality of continuous relaxations of alternative reformulations that include the big-M and the hull relaxation. We then review disjunctive branch and bound as well as logicbased decomposition methods that circumvent some of the limitations in traditional MINLP optimization. We next consider the case of linear GDP problems to show how a hierarchy of relaxations can be developed by performing sequential intersection of disjunctions. Finally, for the case when the GDP problem involves nonconvex functions, we propose a scheme for tightening the lower bounds for obtaining the global optimum using a combined disjunctive and spatial branch and bound search. We illustrate the application of the theoretical concepts and algorithms on several engineering and OR problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LOGMIP : a discrete continuous nonlinear optimizer

Discrete-continuous non-linear optimization models are frequently used to formulate problems in Process System Engineering. Major modeling alternatives and solution algorithms include generalized disjunctive programming and MINLP. Both have advantages and drawbacks depending on the problem they are dealing with. In this work, we describe the theory behind LOGMIP, a new computer code for disjunc...

متن کامل

LOGMIP: a disjunctive 0–1 non-linear optimizer for process system models

Discrete-continuous non-linear optimization models are frequently used to formulate problems in process system engineering. Major modeling alternatives and solution algorithms include generalized disjunctive programming and mixed integer non-linear programming (MINLP). Both have advantages and drawbacks depending on the problem they are dealing with. In this work, we describe the theory behind ...

متن کامل

Improved Formulations and Computational Strategies for the Solution and Nonconvex Generalized Disjunctive Programs

Many optimization problems require the modelling of discrete and continuous variables, giving rise to mixed-integer linear and mixed-integer nonlinear programming (MILP / MINLP). An alternative representation of MINLP is Generalized Disjunctive Programming (GDP)1. GDP models are represented through continuous and Boolean variables, and involve algebraic equations, disjunctions, and logic propos...

متن کامل

New Algorithms for Nonlinear Generalized Disjunctive Programming

Generalized Disjunctive Programming (GDP) has been introduced recently as an alternative model to MINLP for representing discrete/continuous optimization problems. The basic idea of GDP consists of representing discrete decisions in the continuous space with disjunctions, and constraints in the discrete space with logic propositions. In this paper, we describe a new convex nonlinear relaxation ...

متن کامل

Simultaneous mixed-integer dynamic optimization for integrated design and control

We consider strategies for integrated design and control through the robust and efficient solution of a mixed-integer dynamic optimization MIDO) problem. The algorithm is based on the transformation of the MIDO problem into a mixed-integer nonlinear programming (MINLP) rogram. In this approach, both the manipulated and controlled variables are discretized using a simultaneous dynamic optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008